
Bonus Lecture 2  
Graphics Programming 

Intro
<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie


3d Computer Graphics
• 2 major paradigms (others exist) 

• ray tracing / path tracing 

• mathematical model + rays of light 

• high quality: movies, animations, realistic stills 

• rasterised

• flatten 3d triangles into pixels 

• fast: games, real-time or interactive simulations



Ray Tracing
• high-quality renders 

• basic on physics of light: 
optics 

• typically uses CPU 

• easy to parallelise - 1 
thread per pixel 

• curves, spheres, 
transparency 

• may take a while to 
calculate



Ray Tracing
• For each pixel on the screen 

• cast a mathematical ray forward in direction of view 

• if it intersects with an object in the scene 

• colour the pixel with that colour… 

• Can keep bouncing/bending rays until they hit a light

• accurate shading, refraction, reflection, shadows 

• Note that real light rays bounce from light into the eye 

• reversed from eye to light = fewer calculations





Weekend Project?
• You have all the skills to do this now 

• linear algebra (e.g. ray + sphere 
intersection) 

• programming 

• write to an image file 

• Peter Shirley's mini-books are a great 
way to start 

• good coding practice 

• fun output 

• no libraries



Rasterised Rendering
• typically uses specialised Graphics Processing 

Unit (GPU) 

• highly parallel 

• fast floating point computation 

• everything is triangles and floating point numbers 

• CPU is better at integers, and branching code





How to talk to the GPU
• make some buffers of 3d points 

• usually arrays of floats 
 
float vertex_buffer[] = {x, y, z, x, y, z, x, y, z}; 

• write a shader program (define the style of drawing) 

• vertex shader - how to position each points 

• fragment shader - how to colour each pixels 

• these look almost exactly like C programs 

• copy these to the GPU using the API of your choice… 

• draw(my buffer, with my shader program);



Vertex Buffer



Vertex Shader String

• Runs one shader for each of your 3d points in the buffer 

• Input (3d point position) is: in vec3 vp; 

• Output is built-in 4d point gl_Position = … 

• Add/subtract/modify values (or a time variable) to vp to make it animate 

• vec3 offset = vec3(0.0, 1.0, 0.0);  

• gl_Position = vec4(vp + offset, 1.0); 

• Usually use linear algebra to create camera viewpoint and angle 

• Change the 1.0 at the end to get the GPU to simulate a perspective camera; xyz = xyz / w



Fragment Shader String

• Executes after the triangle has been flattened onto 2d display (rasterised) 

• Runs one shader for each pixel-sized area of your triangle on screen 

• No inputs here - but we could add some outputs from vertex shader as inputs 

• Output is an RGBA (red,blue,green,alpha) colour which I called frag_colour 

• Modify the R G B A values here to do interesting stuff 

• Simulate lighting 

• Crazy patterns



GPU APIs
• OpenGL - available on most platforms incl. web 

• Direct3D - Microsoft 

• Metal - Apple 

• Vulkan - new. from the OpenGL people (Khronos Group) 

• Use as programming libraries 

• But are more like hardware drivers really 

• All are very time-consuming to learn (and .: poorly designed 
IMO)



Learning OpenGL
• Current version is OpenGL 4.5 

• Beware old stuff (pre ~3.2) is very different and up to 15 years out of date  
(including some lecture slides… …) 

• I have loads of stuff on 

• my website http://antongerdelan.net/opengl/ 

• GitHub https://github.com/capnramses/antons_opengl_tutorials_book 

• ebook on Amazon/Itch 

• Ask me any time 

• There are some pretty good tutorial websites around now 

• https://learnopengl.com - Joey de Vries 

• open.gl - Alexander Overvoorde

http://antongerdelan.net/opengl/
https://github.com/capnramses/antons_opengl_tutorials_book
https://learnopengl.com
http://open.gl


OpenGL Overview
• OpenGL only draws triangles 

• Download a couple of helper libraries (GLFW and GLEW) - open a 
Window, keyboard input, etc 

• Update video drivers to install latest OpenGL libs 

• Write a C program 

• Link against OpenGL and the helper libs 

• Include headers for helper libs 

• Use functions from OpenGL - docs.gl is a great unofficial API doc 

• Have fun drawing stuff and playing with shaders

http://docs.gl


Blooper Reel











Rendering Engine
• Library or middleware or whole dev framework 

• Sit on top of graphics APIs - often support many 

• Do more than just draw triangles 

• load/save different types of files 

• render text 

• eg know how to animate rigged human characters 

• I enjoy writing the rendering code more than using it…



Final Admin
• Mike Brady will have you for the final lecture tomorrow

• probably will ask for course feedback 

• We can cancel the tutorial + lab this week 

• If you need me next year 

• personal email on website 

• ask Peter or Mike 

• I'll upload a sample exam paper ASAP 

• You've survived over 50 hours of me talking about code. 

• Goal was to improve code skills/tools + theory because you'll need both 

• Hopefully that worked and it was interesting enough!


