Bonus Lecture 2

Graphics Programming
INtro

<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

3d Computer Graphics

e 2 major paradigms (others exist)
* ray tracing / path tracing
 mathematical model + rays of light
* high quality: movies, animations, realistic stills
- rasterised
» flatten 3d triangles into pixels

o fast: games, real-time or interactive simulations

Ray lracing

high-quality renders

basic on physics of light:
optics

typically uses CPU

e casy to parallelise - 1
thread per pixel

curves, spheres,
fransparency

may take a while to
calculate

Ray lracing

 For each pixel on the screen
e cast a mathematical ray forward in direction of view
e if it intersects with an object in the scene
e colour the pixel with that colour...
« Can keep bouncing/bending rays until they hit a light
e accurate shading, refraction, reflection, shadows
e Note that real light rays bounce from light into the eye

* reversed from eye to light = fewer calculations

st oll 0DAS ?oc
O, imecsect ion

foc €0 Dixe\ on 00\5@’3

=z 7

e I
/A T A A A

N 4 7

©C,0\6* A (‘0&
Yhe 0‘5\/\ 1
gcom Ahe \law?& X l @/&,\» (Ob o \\3\(\‘\'

Souc S

@Qw&\ (O0eC = red % :Sz,\\o@

?\OS mc,cd (Q@c&a&

Weekend Project?

 You have all the skills to do this now

Look inside Ray Tracing in
by Peter Shirley ~ (Author)
 linear algebra (e.g. ray + sphere RAY TRACING e defeds - 24 oustome
lnterseCtlon) S See all formats and editions
Kindle
$2.64

e programming

Read with Our Free App

e write to an image file

This informal book takes you
chapter adds one feature to t
cover. Details of basic ray tra

» Peter Shirley's mini-books are a great
way 1o start

Length: 49 pages ~
PETER SHIRLEY Similar books to Ray Tracing in One

e good coding practice
e fun output

* NO libraries

Rasterised Rendering

typically uses specialised Graphics Processing
Unit (GPU)

* highly parallel
* fast floating point computation
everything is triangles and tloating point numbers

* CPU is better at integers, and branching code

-

\%. A

Q) Gromekn Stored it

05 BAQONS @}\o’(dwom T\
gw*’\o ouX o%

How to talk to the GPU

make some buffers of 3d points

o usually arrays of floats

float vertex buffer[] = {x, v, 2, X, Vv, 2, X, YV, 2Z};

write a shader program (define the style of drawing)

« vertex shader - how to position each points

« fragment shader - how to colour each pixels

« these look almost exactly like C programs
copy these to the GPU using the API of your choice...

draw(my buffer, with my shader program);

Vertex Buffer

v
X
4 \

-1 QPRI 1

It always helps to draw your problem on paper first. Here | want to define a triangle, with the points
given in clock-wise order, that fits into the screen area of -1:1 on x and y axes.

Vertex Shader String

const charx vertex_shader =
"#version 400\n"

"in vec3 vp;"

"void main() {"

" gl_Position = vec4(vp, 1.0);"
"}!I;

Runs one shader for each of your 3d points in the buffer

Input (3d point position) is: in veec3 vp;

Output is built-in 4d point g1_Position = ..

Add/subtract/modify values (or a time variable) to vp to make it animate
e vec3 offset = vec3(0.0, 1.0, 0.0);
e gl Position = vec4(vp + offset, 1.0);

Usually use linear algebra to create camera viewpoint and angle

« Change the 1.0 at the end to get the GPU to simulate a perspective camera; xyz = xyz/w

Fragment Shader String

const charx fragment_shader
"#version 400\n"

"out vec4 frag_colour;"
"void main() {"

" frag_colour = vec4(0.5, 0.0, 0.5, 1.0);"

T

Executes after the triangle has been flattened onto 2d display (rasterised)

Runs one shader for each pixel-sized area of your triangle on screen

No inputs here - but we could add some outputs from vertex shader as inputs
Output is an RGBA (red,blue,green,alpha) colour which | called frag _colour
Modify the R G B A values here to do interesting stuff

o Simulate lighting

e Crazy patterns

GPU APlIs

OpenGL - available on most platforms incl. web
Direct3D - Microsoft

Metal - Apple

Vulkan - new. from the OpenGL people (Khronos Group)
Use as programming libraries

But are more like hardware drivers really

All are very time-consuming to learn (and .: poorly designed
IMQO)

earning OpenGL

Current version is OpenGL 4.5

* Beware old stuff (pre ~3.2) is very different and up to 15 years out of date

(including some lecture slides... ...)

| have loads of stuff on

« my website http://antongerdelan.net/opengl/

« GitHub https://github.com/capnramses/antons_opengl tutorials book

e ebook on Amazon/ltch
Ask me any time
There are some pretty good tutorial websites around now

« https://learnopengl.com - Joey de Vries

« open.gl - Alexander Overvoorde

http://antongerdelan.net/opengl/
https://github.com/capnramses/antons_opengl_tutorials_book
https://learnopengl.com
http://open.gl

OpenGL Overview

OpenGL only draws triangles

Download a couple of helper libraries (GLFW and GLEW) - open a
Window, keyboard input, etc

Update video drivers to install latest OpenGL libs
Write a C program
* Link against OpenGL and the helper libs
* |nclude headers for helper libs
Use functions from OpenGL - docs.gl is a great unofficial APl doc

Have fun drawing stuff and playing with shaders

http://docs.gl

Blooper Reel

HZ 68.81
GLDRAWS 128

ERTICES 5749

.ﬂ
™

T

&l‘-\lﬁ;‘
\| |
|' \

Anton of Dublin @capnramses - 23 Feb 20
e switching lights from uniforms to UBOs. thlngs got weird. #blooperreel

" Anton of Dublin
game's bug list is cleared!
) from the changelog: "BUGFIX: decapitated heads can only bounce 32 times"

Anton of Dublin

well i sort of got it working with one light so |
g o o tried 3 at once. hmmm i like the green. bug or

dungeon security precautions are at an all time low - had a bug where fe a‘tu rer?
) portcullises were not locked in the sewers

Anton of Dublin
s just fixed a bug where baddies would leap, lemming-like, over cliffs to their

unexpected, but humorous porting bug surprise - giant decapitated 49 ' doom in their zeal to attack the hero

heads, bouncing around!

1594 days ago

l‘t-f'l::@

Storm My Castle!

i

-

«°e»
L)

we
s

reflection cpu=0.15ms gpu=0.26ms
refraction cpu=0.06ms gpu=0.14ms

ground cpu=0.01ms gpu=0.14ms

walter

«we
-«

16.66ms (60.01H2)
cpu=0.01ms gpu=0.72ms
s cpu=0.29ms gpu=0.37ms

lree

capnramses - Aug 29

woops. #blooperreel

£
o)
=
(a]
(Yo
o
c
(]
]
c
<

=l Storm My Castle!

16.67ms (59.99Hz) -

reflection cpu=0.20ms. gpu=0.36ms
refraction cpu=0.04ms gpu=0.22ms
ground cpu=0.01ms gpu=0.22ms
builds+pe’s cpu=0.02ms g

water cpu=0.01ms gp

trees cpu=0,28ms

post cpu=0i07g

Anton of Dublin @capnramses - Sep 13
"i feel sick but i'll try to fix that bloom shader". FAIL. #blooperreel

Al L x4 L ih oo

Rendering Engine

Library or middleware or whole dev framework

Sit on top of graphics APIs - often support many

Do more than just draw triangles

* |oad/save different types of files

* render text

* eg know how to animate rigged human characters

| enjoy writing the rendering code more than using it...

Final Admin

Mike Brady will have you for the final lecture tomorrow
« probably will ask for course feedback
We can cancel the tutorial + lab this week
If you need me next year
e personal email on website
* ask Peter or Mike
I'll upload a sample exam paper ASAP
You've survived over 50 hours of me talking about code.
Goal was to improve code skills/tools + theory because you'll need both

« Hopefully that worked and it was interesting enough!

